In solving the mystery of gene function, there is no more important clue than the phenotype of inactivating the gene of interest. With a plethora of methods available, researchers must first determine what approach is best for their specific scientific questions and experimental systems.
For over a decade, RNA-interference-based methods of gene knockdown (i.e. RNAi & shRNA) have provided a wealth of insight into gene function, but in recent years the advent of CRISPR- and TALEN-based methods now allow genome editing to be used to quickly and efficiently test the effect of gene knockouts. Here, we review the advantages and disadvantages of these approaches, and describe some experimental situations in which one approach is better than another, focusing primarily on CRISPR/Cas9 and shRNA. For a discussion of the relative advantages of CRISPR/Cas9 versus TALEN, see our prior Newsletter on this topic (apac.cyagen.com/community/newsletters/issue-1.html).
Cyagen Biosciences recently introduced VectorBuilder, an award-winning online platform for custom design and cloning of DNA vectors for all of your experimental needs, including a full line of shRNA and CRISPR vectors, plus many other vector systems such as lentivirus, adenovirus, AAV, piggyBac, regular plasmid and more! Cyagen Biosciences also provides custom virus packaging and mouse/rat model generation, including transgenics, knockouts and knockins.
영업일 기준 1-2일 내에 답변해 드리겠습니다.